Project name Passivhaus Mews II

Project summary Overcoming a tight budget, constricted access issues, & sudden changes to the team, this triumphant urban infill delivers a compact light-filled comfortable home. The owners brief was centred on comfort and ease of use, but through her profession as a physiotherapist, it was clear that health was also very important; this made the Passivhaus approach an easy choice. Passivhaus Mews II accommodates three bedrooms, two bathrooms, a hydro-therapy pool and carport into the site of a double garage, at the back of the owners old house.

Projected build start date 01 Nov 2017
Projected date of occupation Occupied
Project location Camberwell, London, London, England
Energy target PassivHaus
Build type New build
Building sector Private Residential
Property type Existing external wall construction
Energy Cost Other
Project team

Organisation

Project lead

Client

Architect RDA Architects

Mechanical & electrical consultant(s) Green Building Store

Energy consultant(s)

Structural engineer

Quantity surveyor

Other consultant Certifier - MEAD Ltd

Contractor CLC Build

Design strategies

- Planned occupancy
- Space heating strategy
- Water heating strategy
- Fuel strategy
- Renewable energy generation strategy
- Passive solar strategy
- Space cooling strategy
- Daylighting strategy
- Ventilation strategy
- Airtightness strategy
- Strategy for minimising thermal bridges
- Modelling strategy
- Insulation strategy
- Other relevant retrofit strategies
- Other information (constraints or opportunities influencing project design or outcomes)

Energy use

Fuel use by type (kWh/yr)

<table>
<thead>
<tr>
<th>Fuel</th>
<th>previous</th>
<th>forecast</th>
<th>measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Primary energy requirement & CO2 emissions

<table>
<thead>
<tr>
<th>Fuel</th>
<th>previous</th>
<th>forecast</th>
<th>measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Renewable energy (kWh/yr)

<table>
<thead>
<tr>
<th>Renewables technology</th>
<th>forecast</th>
<th>measured</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Energy consumed by generation | | |

Airtightness (m³/m².hr @ 50 Pascals)

<table>
<thead>
<tr>
<th></th>
<th>Date of test</th>
<th>Test result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-development airtightness</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Final airtightness</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Annual space heat demand (kWh/m².yr)

<table>
<thead>
<tr>
<th>Space heat demand</th>
<th>Pre-development</th>
<th>forecast</th>
<th>measured</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Whole house energy calculation method
- PHPP

Other energy calculation method
- Predicted annual heating load -
- Other energy target(s)

Building services
- Occupancy
- Space heating
- Hot water
- Ventilation
- Controls
- Cooking
- Lighting
- Appliances
- Renewables
Building construction

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>