

https://www.lowenergybuildings.org.uk/

Project name Mayfield Passivhaus

Project summary A replacement dwelling on the site of a 1930s bungalow. Set within a historic Percy Crane landscape garden, this new dwelling provides 6 bedrooms over three storeys and responds to the layout of the historic garden setting, with footpaths and vistas becoming integral with the layout of the rooms and glazing. The house is a three dimensional venn diagram, with two volumes overlapping in the area of the main entrance atrium and staircase, which fall on the principal axis of the site entrance route. This mutual overlapping zone is expressed externally in a full glass roof over the entrance atrium, bringing light and winter warmth into the nucleus of the house. Internally, the layout reflects the order of priority of its users, with the kitchen and dining space taking the most prominent position off the south-facing terrace.

Project Description

Projected build start date

r rejected band clart date	
Projected date of occupation	01 Sep 2015
Project stage	Occupied
Project location	Mayfield, East Sussex, England
Energy target	PassivHaus
Build type	New build

Building sector	Private Residential
Property type	Detached
Existing external wall construction	
Existing external wall additional information	
Existing party wall construction	
Floor area	449 m²
Floor area calculation method	PHPP
Building certification	Passivhaus certified

Project team

Organisation

_	
Project lead	James Galpin, Hazle McCormack Young LLP
Client	Private
Architect	James Galpin, Hazle McCormack Young LLP
Mechanical & electrical consultant(s)	Phil Neve, Aaben Ltd
Energy consultant(s)	Phil Neve, Aaben Ltd (PHPP)
Structural engineer	Crouch Waterfall
Quantity surveyor	
Other consultant	
Contractor	Martin Peat, Richardson & Peat

Design strategies

Planned occupancy	5-7
Space heating strategy	
Water heating strategy	
Fuel strategy	
Renewable energy generation strategy	
Passive solar strategy	
Space cooling strategy	
Daylighting strategy	
Ventilation strategy	
Airtightness strategy	
Strategy for minimising thermal bridges	
Modelling strategy	
Insulation strategy	
Other relevant retrofit strategies	
Other information (constraints or opportunities influencing project design or outcomes)	

Energy use

Fuel use by type (kWh/yr)

Fuel	previous	forecast	measured
Electri c		17065	
Gas			
Oil			
LPG			
Wood			

Primary energy requirement & CO2 emissions

	previous	forecast	measured
Annual CO2 emissions (kg CO2/m².yr)	-	22	-
Primary energy requirement (kWh/m².yr)	-	95	-

Renewable energy (kWh/yr)

Renewables technology	forecast	measured
-		
-		
Energy consumed by generation		

Airtightness (m³/m².hr @ 50 Pascals)

	Date of test	Test result
Pre-development airtightness	-	-
Final airtightness	-	0.5

Annual space heat demand (kWh/m².yr)

	Pre-development	forecast	measured
Space heat demand	-	15	15

Whole house energy calculation method	PHPP
Other energy calculation method	
Predicted annual heating load	-
Other energy target(s)	

Building services

Occupancy

Space heating

Hot water

Ventilation

Controls

Cooking

Lighting

Appliances

Renewables

Strategy for minimising thermal bridges

Building construction

Storeys

Volume

Thermal fabric area

Roof description

Roof U-value

Walls description

Walls U-value

Party walls description

Party walls U-value

Floor description

Floor U-value

Glazed doors description

Glazed doors U-value

Opaque doors description

Opaque doors U-value

Windows description

Windows U-value

Windows energy transmittance

(G-value)

Windows light transmittance

Rooflights description

Rooflights light transmittance

Rooflights U-value

Project images

