

https://www.lowenergybuildings.org.uk/

Project name Bringing Wates homes into the Future

Project summary Wates property structural and low energy refurbishment based on an optimised structural insulated render consisting of a steel cage filled with insulation (Structherm). The void created allows for plumbing and ventilation ducting to provide heat recovery air heating and vent control throughout the house from a heat exchange unit located in the roof space. Other features include air source heat pump supplemented by solar and PV cells, triple glazed windows and doors with reveal detail to improve sealing and solar gain, weather compensating energy controls and a broadband based monitoring system to enable point of use metering information. A porch to reduce energy loss from front door and veranda at the rear for washing to reduce energy...

Project Description

Projected build start date	05 Jul 2010
Projected date of occupation	25 Sep 2010
Project stage	Under construction
Project location	Birmingham, West Midlands, England
Energy target	Retrofit for the Future
Build type	Refurbishment
Building sector	Public Residential

Property type	End Terrace
Existing external wall construction	Concrete frame
Existing external wall additional information	none
Existing party wall construction	blockwork
Floor area	75 m²
Floor area calculation method	PHPP

Project team

Organisation	G F Tomlinson Group Limited
Project lead	G F Tomlinson Group Ltd - Les Needham
Client	Birmingham City Council - Steve Walker
Architect	Pick Everard, Derby - Jerry Tseng
Mechanical & electrical consultant(s)	SPI Ltd, Burntwood, Staffs (part of NPower) - Paul Dillon
Energy consultant(s)	Hadley Brook Enerprises Ltd, Coventry - Dermott McLaughlin
Structural engineer	Structherm Building Systems Ltd, Holmfirth - Julian Taylor
Quantity surveyor	G F Tomlinson Birmingham Ltd - Karen Ford
Other consultant	Loughborough University - Paul Rowley, Bowater, Worcester Bosch
Contractor	G F Tomlinson Birmingham Ltd - Pat Daly

Design strategies

Planned occupancy	Existing family home. Design enables uninterrupted occupancy. Energy performance improvements is in the main achieved externally
Space heating strategy	Heat recovery unit located within the roof space with distribution ducting within the external insulated void with supply and exhaust to each room. This will enable well sealed, controllable heating and ventilation to all spaces. Further more it omits the need for a wet pipework distribution system and the inadequacy and space loss of radiators.
Water heating strategy	Roof or porch mounted Solar thermal panels, appropriate to building orientation. Lower mounting improves maintenance access. Point of use heating and energy display will also improve user appreciation and practice.

Fuel strategy	Due to the long term nature of the proposals it is envisaged that electricity is the likely fuel most likely being generated from available primary fuel sources. Renewable fuel sources being developed Hydrogen fuel cells, pv, wind, wave and nuclear power all produce electricity.
Renewable energy generation strategy	Integration of solar thermal and PV within the roof construction where appropriate. The recent trade in tariffs now make these potentially viable contributors to renewable energy to the house holder.
Passive solar strategy	See notes regarding renewable energy from solar sources. This project does not seek to add elements such as trombe wall techniques to the design as they a re less fail safe. High insulation was considered to be of the greater benefit for the widest range of property
Space cooling strategy	None envisaged due to slower thermal response and higher insulation standards
Daylighting strategy	Replacement high performance window and special reveal design creates sealable stepped junctions with splayed design to retain views and light.
Ventilation strategy	Airtightness by sealed external skin and controlled ventilation and air distribution by heat recovery unit
Airtightness strategy	Interlocking external insulation enhanced by seals, membranes and external rendered finish.
Strategy for minimising thermal bridges	Fully thermally broken components for windows, doors and reveals, minimising fixings to thermally broken external insulation subframe.
Modelling strategy	None at present, it is considered that the prototype (if granted) will enable detailed examination of the minutia for maximum performance
Insulation strategy	High performance external insulation on proprietary top hat subframe supported from existing building shell. No foundation required. There is almost no limit to amount of insulation usable to achieve required standards. The solution also retains the thermal mass characteristics of existing concrete wall panels.

Other relevant retrofit strategies

Conscious that the devil is in the detail, the team has sought ways throughout to ensure stepped sealing details for air tightness and longevity in the finished construction. Over and above primary building performance, It is also felt that a crucial element in design is the availability of point of use information for the user to encourage an understanding of the significance and cost of individual actions.

Other information (constraints or opportunities influencing project design or outcomes)

The project seeks to utilise presently tested and developed products so that development time is reduced. This will to enable an early execution of the solution. The innovation is in design approach to integrate the known products into a coherent whole. The solutions have also been scrutinised by G F Tomlinson (the builder partner) to ensure viable building costs and practice. Project partners include: Birmingham City Council, G F Tomlinson Building, Pick Everard architects, Pick Everard BREEAM assessors, N Power, Hanson Structherm, Worcester Bosch, Bowater window systems, Loughborough University CREST

Energy use

Fuel use by type (kWh/yr)

		` •	
Fuel	previous	forecast	measured
Electric	10669	11310	4049
Gas	22565		7004
Oil			
LPG			
Wood			
7 hour tariff (off eak)			

Primary energy requirement & CO2 emissions

	previous	forecast	measured
Annual CO2 emissions (kg CO2/m².yr)	146	89	51
Primary energy requirement (kWh/m².yr)	702	377	242

Renewable energy (kWh/yr)

Renewables technology	forecast	measured
Photovoltaic	147	
none		

Renewables technology	forecast	measured
Energy consumed by generation		

Airtightness (m³/m².hr @ 50 Pascals)

	Date of test	Test result
Pre-development airtightness	-	11.9
Final airtightness	-	11.1

Annual space heat demand (kWh/m².yr)

	Pre-development	forecast	measured
Space heat demand	-	67	-

Whole house energy calculation method SAP Extension for Whole House

Other energy calculation method	SAP extention worksheet
Predicted heating load	67 W/m² (demand)
Other energy target(s)	Whole House Primary Energy Demand 130kWh/m2/yr Primary areas of additional energy reduction; 1. Water Heating 2. Lighting 3. Appliances

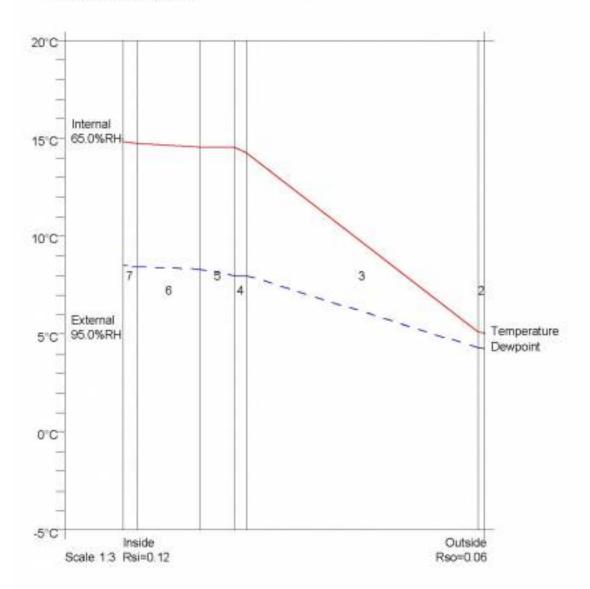
Building services

Occupancy	NULL
Space heating	NULL
Hot water	NULL
Ventilation	NULL
Controls	NULL
Cooking	NULL
Lighting	NULL
Appliances	NULL
Renewables	NULL
Strategy for minimising thermal bridges	NULL

Building construction

S	to	re)y	S

Otorcys	
Volume	
Thermal fabric area	
Roof description	NULL
Roof U-value	0.00W/m ² K
Walls description	NULL
Walls U-value	0.00W/m² K


Party walls description	NULL
Party walls U-value	0.00W/m² K
Floor description	NULL
Floor U-value	0.00W/m² K
Glazed doors description	NULL
Glazed doors U-value	0.00W/m² K
Opaque doors description	NULL
Opaque doors U-value	0.00W/m² K
Windows description	NULL
Windows U-value	0.00W/m² K
Windows energy transmittance (G-value)	
Windows light transmittance	
Rooflights description	NULL
Rooflights light transmittance	
Rooflights U-value	0.00W/m² K

Project images

Condensation Risk Analysis (no account taken of thermal bridges)

Internal / External Conditions: 15.0°C @ 65.0%RH / 5.0°C @ 95.0%RH Buildup period 60 days

	Interface Temp. °C	Dewpoint Temp. °C	Vapour Pressure (kPa)	Saturated V.P. (kPa)	Winter Buildup (g/m²)	Annual Buildup (g/m²)	Conden- sation
1 Outside surface resistance	5.1	4.3	0.83	0.88		-	No
2 Render (BS5250)	5.1	4.3	0.83	0.88			No
3 Expanded polystyrene (BS5250)	14.3	8.0	1.07	1.63	+		No
4 Cavity >=25mm, wall (CIBS)	14.5	8.0	1.07	1.65		9	No
5 Concrete, dense 6 Concrete, light weight	14.6	8.3	1.10	1.66			No
	14.7	8.4	1.10	1.68	-	-	No
7 Gyproc Wallboard 8 Inside surface resistance	14.9	8.5	1.11	1.69	-	0	No

JPA Designer Version 4.02a1 Licensed to Structherm Limited Page 2 of 2

© JPA Technical Literature Oct 2009

X:\Shared Work Folder\JOBSFILE\6900-6999\6954\Calculations\UValues\6954 U-Values.JDP

This document is copyright to Structherm Ltd and is for the sole use of the party for whom it is prepared and shall not be copied either physically or electronically or stored on retrieval systems or given to third parties without the express written consent of Structherm Ltd. U-Value calculations are not an exact science and are based on assumptions made about the existing construction and their predicted

Low Energy Buildings	Page 9
Low Energy Dunanings	rage 9

CONDENSATION RISK ANALYSIS

Energy used: 102 kWh/m2/year

Users Ref: GFT06

Issued on: 30.November.2009

Prop Type Ref:

Property:

DER: 15.52

SAP Rating: 80 C

SAP Energy Cost: £245.31

TER: 32.41

El Rating: 87 B

CO2 Emissions: 1.32 t/year

Encl: 4

ZC: 0.00

Surveyor B249-0000, Dermot McLaughlin, Tel: 02476 792 621, Fax: 02476 236 024 The Techno Centre, Pama Way, Coventry, CVI 2TT

Client:

Software Version: EES SAP 2005.018.01, June 2009 (Design System), BRE SAP Worksheet 9.81

SAP version: 9.81 Regs Region: England and Wales (Part L1A 2006), Calculation Type: New Build Calculation method: BS EN ISO 6946, BS EN ISO 13370, BS 5250

Roof Plane 1

Environmental conditions:

External conditions:	Temperature: 5 °C	Relative Humidity: 95 %
Internal conditions:	Temperature: 15 °C	Relative Humidity: 65 %

Table of layers:

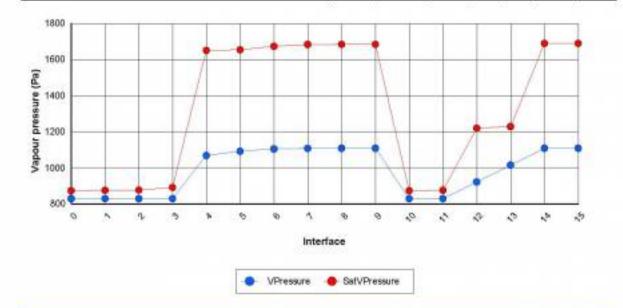
Layer	Width	Thermal conduct.	Thermal resistance	Cumulative thermal resistance	Vapour resistivity	Vapour resistance	Cumulative vapour resistance
	core	WmK	m2.K/W	n2.K/W	CNakgm	GNakg	CNakg
External surface	(*)	0.000	0.040	0.040	0.000	0.000	0.00
1. Render - Gypsum and Sand	6.0	0.800	0.008	0.048	0.000	0.000	0.00
2. Standard cavity	25.0	0.000	0.180	0.228	0.000	0.000	0.00
3. Expanded polystyrene	200.0	0.030	6.667	6.894	300.0	60.00	60.00
4. Concrete, dense	30.0	1.667	0:018	6,912	200.0	6.00	66.00
5. Concrete, no fines	54,0	0.400	0.135	7.047	60.0	3.24	6924
6. 12.5mm Gyproc Wallboard	12.5	0.190	0.066	7.113	60.0	0.75	69.99
7. Plaster, standard	3.0	0.400	0.008	7.120	60.0	0.18	70.17
Internal surface		0.000	0.130	7.120	0.000	0.000	70.17
External surface	- 1	0.000	0.040	0.040	0.000	0.000	0.00
1. ROCKWOOL ROLL	150.0	0.040	3.750	3.790	5.9	0.89	0.89
2. 12.5mm Gyproc Waliboard	15.0	0.190	0.079	3.869	60.0	0.90	1.79
3. ROCKWOOL ROLL	150.0	0.040	3.750	7.619	5.9	0.89	2.67
Internal surface	- 1	0.000	0.100	7.619	0.000	0,000	2.67

Low Energy Buildings		Page 11

Page: 2

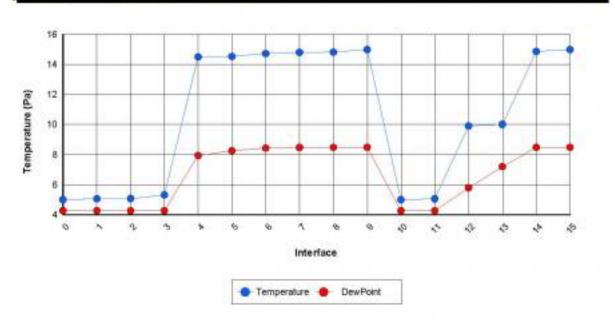
0.00

8.48


0.00

pour pressure table;							
Interface - between layers	Interface temp.	Vapour pressure Pa	Satur. vapour pressure Pa	Dew point	Cond. rate gts1.h	Cond. rate 60 days g/m2.h	nsk
External surface	5.00	828.3	871.9	4,27	0.00	0.00	No
1. External surface / ROCKWOOL ROLL	5.05	828.3	875.0	4.27	0.00	0.00	No
2. ROCKWOOL ROLL / 12 5mm Gyprec Wallboard	9,91	920.9	1 219.9	5.79	0.00	0.00	No
3. 12.5mm Gyproc Wallboard / ROCKWOOL ROLL	10.01	1 015.2	1 2283	7.20	0.00	0.00	No
4. ROCKWOOL ROLL / Internal surface	14.87	1.107.9	1 690.2	8.48	0.00	0.00	No

15.00


1107.9

1 690.2

Interface temperature / Dew point graphical representation:

Internal surface

Low Energy Buildings	Page 13

CONDENSATION RISK ANALYSIS

Users Ref: GFT06 Issued on: 30.November.2009

Prop Type Ref:

Property:

DER: 15.52

SAP Rating: 80 C

SAP Energy Cost: £245.31

TER: 32.41

CO2 Emissions: 1.32 t/year

El Rating: 87 B Energy used: 102 kWh/m2/year

Encl: 4

ZC: 0.00

Surveyor B249-0000, Dermot McLaughlin, Tel: 02476 792 621, Fax: 02476 236 024

Client:

The Techno Centre, Pama Way, Coventry, CVI 2TT

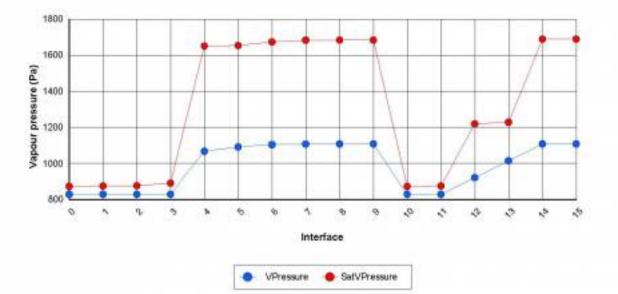
Software Version: EES SAP 2005.018.01, June 2009 (Design System), BRE SAP Worksheet 9.81 SAP version: 9.81 Regs Region: England and Wales (Part L1A 2006), Calculation Type: New Build

Calculation method: BS EN ISO 6946, BS EN ISO 13370, BS 5250

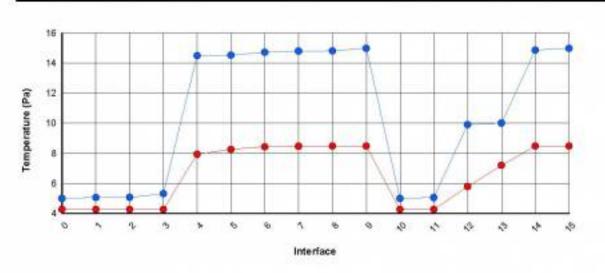
Wall Main

Environmental conditions:

External conditions:	Temperature: 5 °C	Relative Humidity: 95 %
Internal conditions:	Temperature: 15 °C	Relative Humidity: 65 %


Table of layers:

Layer	Width	Thermal conduct.	Thermal resistance	Cumulative thermal resistance	Vapour resistivity	Vapour resistance	Cumulative vapour resistance
	core	WmK	m2.K/W	n2.K/W	CNakgm	GNakg	CNakg
External surface	(*)	0.000	0.040	0.040	0.000	0.000	0.00
1. Render - Gypsum and Sand	6.0	0.800	0.008	0.048	0.000	0.000	0.00
2. Standard cavity	25.0	0.000	0.180	0.228	0.000	0.000	0.00
3. Expanded polystyrene	200.0	0.030	6.667	6.894	300.0	60.00	60.00
4. Concrete, dense	30.0	1.667	0:018	6,912	200.0	6.00	66.00
5. Concrete, no fines	54,0	0.400	0.135	7.047	60.0	3.24	6924
6. 12.5mm Gyproc Wallboard	12.5	0.190	0.066	7.113	60.0	0.75	69.99
7. Plaster, standard	3.0	0.400	0.008	7.120	60.0	0.18	70.17
Internal surface		0.000	0.130	7.120	0.000	0.000	70.17
External surface	- 1	0.000	0.040	0.040	0.000	0.000	0.00
1. ROCKWOOL ROLL	150.0	0.040	3.750	3.790	5.9	0.89	0.89
2. 12.5mm Gyproc Waliboard	15.0	0.190	0.079	3.869	60.0	0.90	1.79
3. ROCKWOOL ROLL	150.0	0.040	3.750	7.619	5.9	0.89	2.67
Internal surface	- 1	0.000	0.100	7.619	0.000	0,000	2.67


Low Energy Buildings	Page 15

EA	-		•	
	œı	ю	o.	 ۹

Vapour pressure table:							
Interface - between layers	Interface temp.	Vapour pressure Pa	Satur. vapour pressure Pa	Dew point	Cond. rate gts1.h	Cond. rate 60 days p/n2.h	Cond, risk
External surface	5.00	828.3	871.9	4.27	0.00	0.00	No
External surface / Render - Gypsum and Sand	5.06	828.3	875.2	4.27	0.00	0.00	No
Render - Gypsum and Sand / Standard cavity	5.07	828.3	875.9	4.27	0.01	20.66	No
3. Standard cavity / Expanded polystyrene	5.31	828.3	891.1	4.27	0.01	20.66	No
Expanded polystyrene / Concrete, dense	14.51	1 067.3	1 651.2	7.93	0.00	0.00	No
5. Concrete, dense / Concrete, no fines	14.53	1091.2	1 653.9	8.26	0.00	0.00	No
6. Concrete, no fines / 12.5mm Gyproc Wallboard	14.72	1104.2	1 673.9	8.43	0.00	0.00	No
7. 12.5mm Gyproc Wallboard / Plaster, standard	14.81	1.107.1	1 683.7	8.47	0.00	0.00	No
8. Plaster, standard / Internal surface	14.82	1107.9	1 6848	8.48	0.00	0.00	No
Internal surface	15.00	1107.9	1 684.8	8.48	0.00	0.00	No

Interface temperature / Dew point graphical representation:

Low Energy Buildings		Page 17

Predicted Energy Assessment

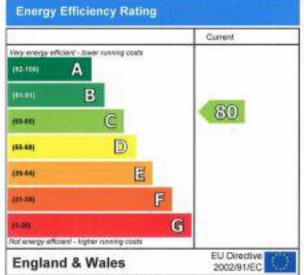
Dwelling type:

End-terrace house

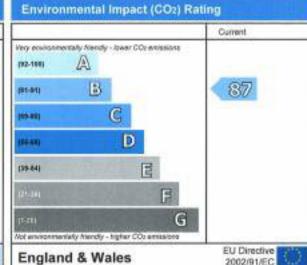
Date of assessment:

06 November 2009

Produced by:

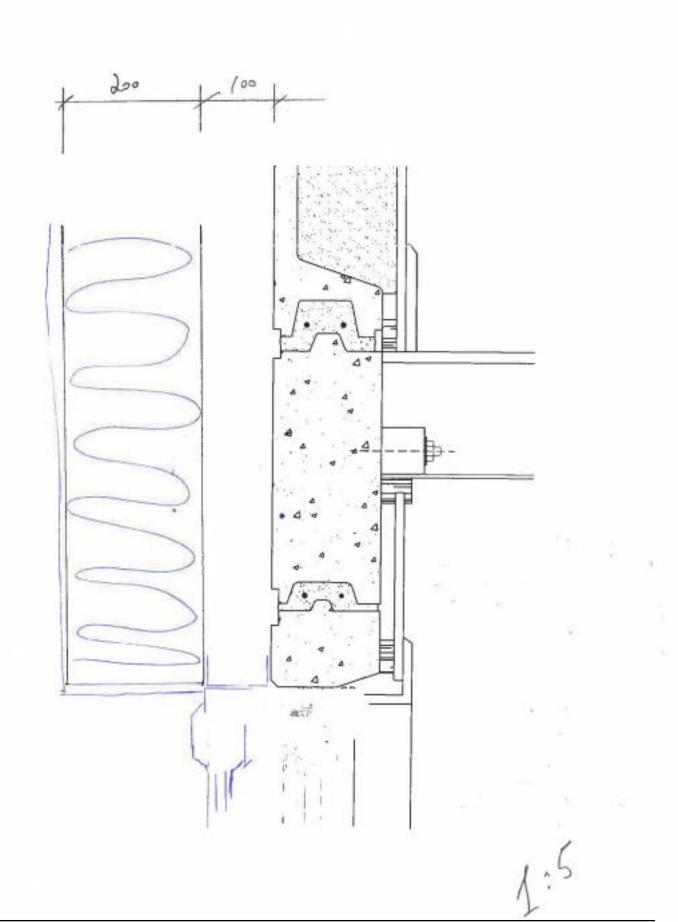

Hadley Brook Enterprises Limit.

Total floor area:

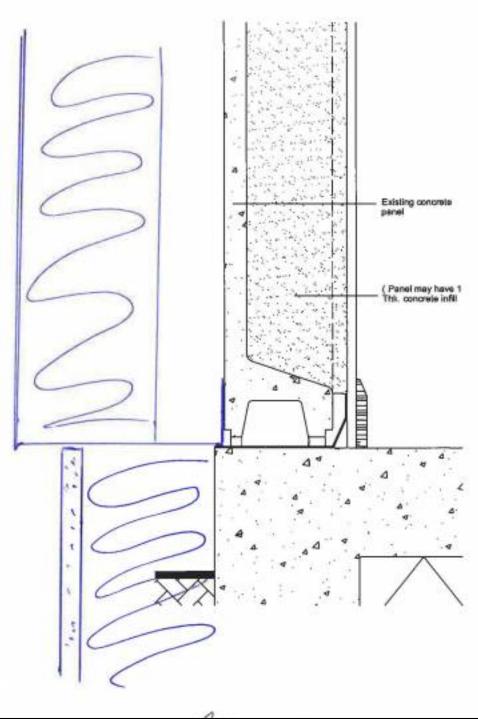

87 m²

This document is a Predicted Energy Assessment required to be included in a Home Information Pack for properties marketed when they are incomplete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, the Pack should be updated to include information about the energy performance of the completed property.

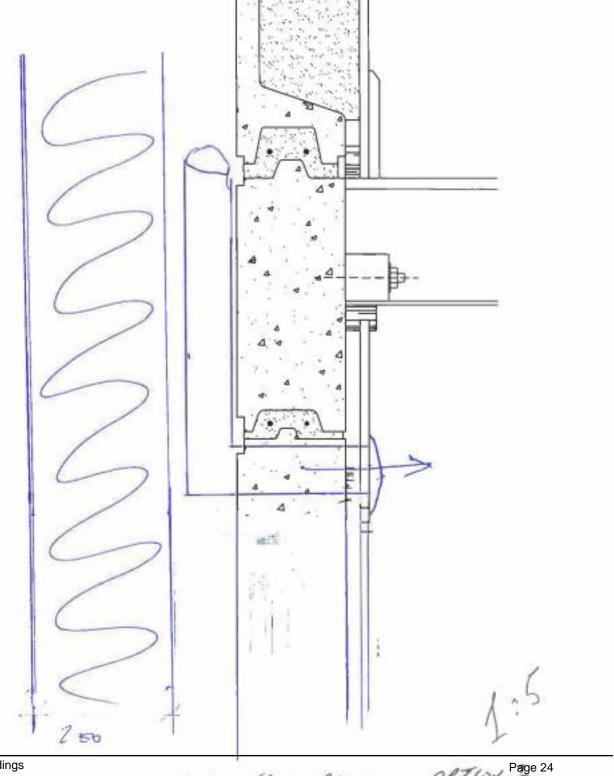
Energy performance has been assessed using the SAP 2005 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.



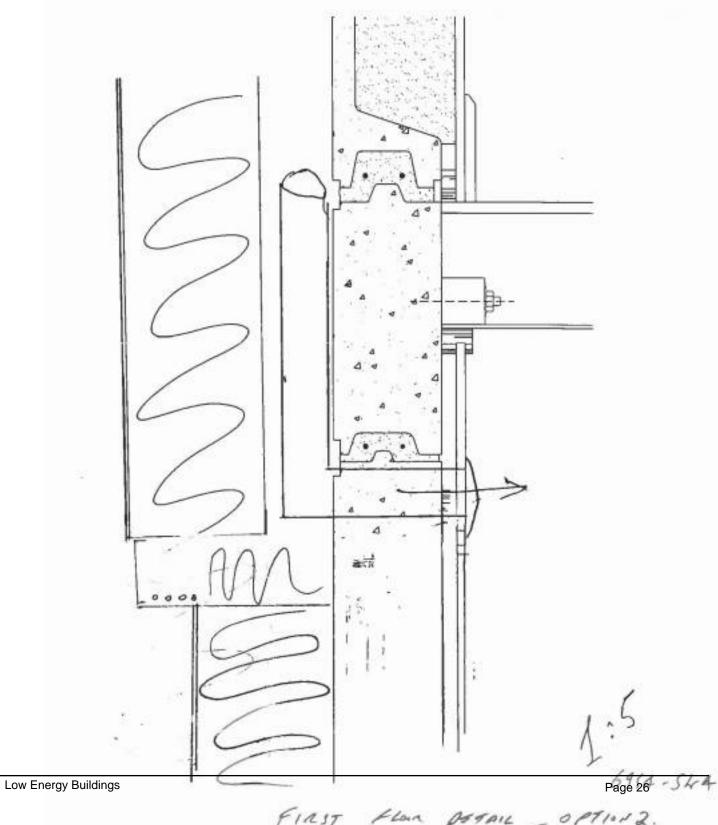
The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.


The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO₂) emissions. The higher the rating the less impact it has on the environment.

Low Energy Buildings		Page 19

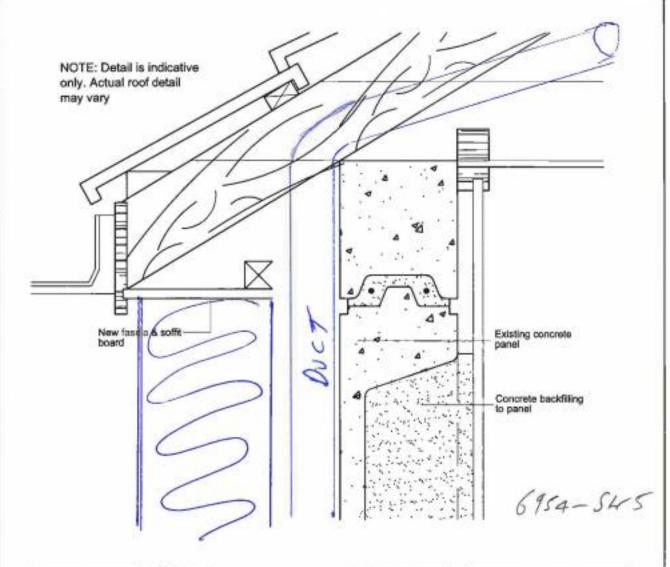

Low Energy Buildings

Page 20 6954 - SH1


Low Energy Buildings

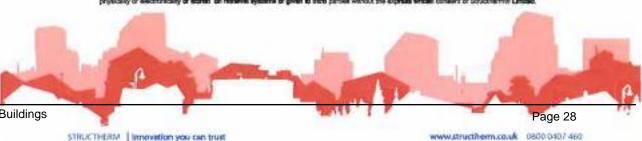
BASE DETAIC. 6954-2542

Low Energy Buildings

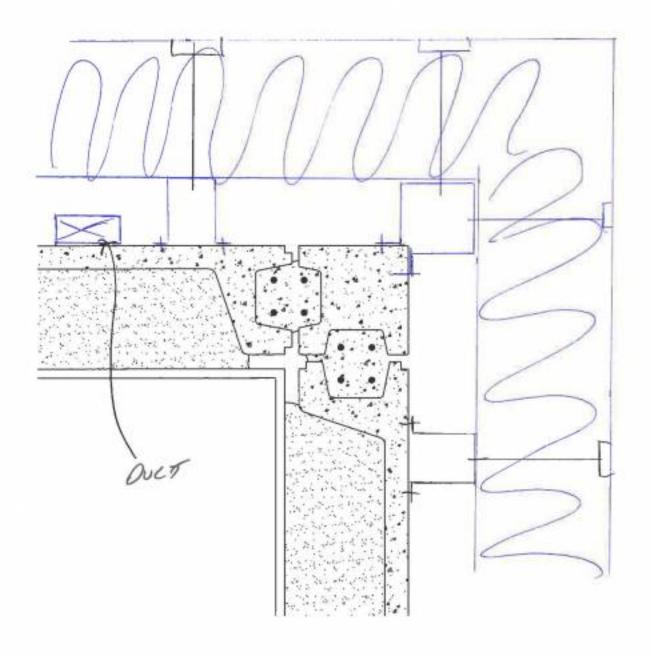

FIRST FLOOR DEGALL - OPTION Page 24
6954-543

Low Energy Buildings		Page 27

Structherm | Cladding Solutions Thermal Performance, Structural Continuity

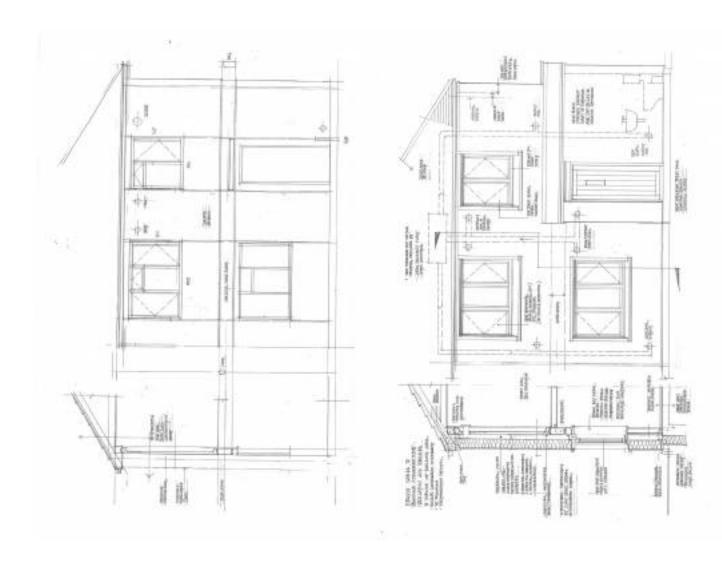

1500 0	PLUCTHERN LTD OFFICE USE
Sete	01.12.06
Deve	R.C.Dowling
Ovecto	d
Scale	N.T.S.

DETAL REF:	Wates-02	"A
House Type:	Wates Properties	
THLE	Details at Eaves	


Bent Ley Road Metham, Holmfirth Huddersfield HD9 4AP

Tel 01484 850098 Fax 01484 851388 e-mail: CAD@struchern.co.uk

ent is Copyright to Standhern® Limited and is for the edic use of the party for whom it is prepared and shall not be copied with electronically or stands on retrieval systems or given to third parties without the express written consent of Structhern® Limited


Low Energy Buildings

Low Energy Buildings

